Pere I

PHASE EQUILIBRIA

MOLECULAR TRANSPORT

THERMODYNAMICS

Vapor-Liquid Equilibrium Constants for the Ethane–*n*-Butane–*n*-Pentane System at 200°, 250°, and 300° F.

VINOD S. MEHRA and GEORGE THODOS Northwestern University, Evanston, III.

> Vapor-liquid equilibrium constants were established at 200, 250, and 300° F. for a complete range of pressures and compositions. Values of the critical pressure and composition are presented for each temperature investigated.

HERLIHY AND THODOS (3) have recently determined vapor-liquid equilibrium constants for the ethane-nbutane-n-pentane system at 150° F. In the present study, this work has been extended to establish equilibrium constants for this system at 200°, 250°, and 300° F. for a complete range of pressures and compositions.

APPARATUS AND PROCEDURE

The apparatus used is basically the same as that described in detail previously (6), with some modifications. The ternary mixture was charged into an equilibrium cell equipped with a movable piston to control the pressure of the system which was measured with Heise gages, calibrated with a dead weight gage. This procedure is known to reproduce pressures to within 2 p.s.i. In the present study, the charging system consisted of individual reservoirs for each constituent from which they were charged into the cell. The cell was surrounded by an air bath which was capable of maintaining the over-all temperature of the cell to within 0.2° F. of the desired temperature. Under these conditions the temperature across the cell varied from 0.2° to F. at 200° F. to 0.4° F. at 300° F. Agitation was provided by a stirrer coupled magnetically to an external mechanical drive.

The system was found to reach a constant pressure in approximately 2 hours except for conditions near the

critical point, where more time was required. After this equilibrium was attained, microsamples of the vapor and liquid phases were removed and analyzed with a gas chromatography unit, standardized for this system with the aid of a mass spectrometer. Analyses carried out on the gas chromatograph were reproducible in a series of several measurements to within 1 mole % of a component based on the assumption that the mass spectrometer results represented the true composition.

MATERIALS

The hydrocarbons were reagent grade. The supplier (Phillips Petroleum Co.) claimed the purity to be as follows: ethane, 99.91 mole %; *n*-butane, 99.90 mole %; and *n*-pentane, 99.80 %.

EXPERIMENTAL

Before the ternary system was investigated at each temperature, the apparatus and experimental procedure were tested by obtaining vapor-liquid equilibrium data for the ethane-*n*-pentane system at that temperature and were compared with the values reported by Reamer, Sage and Lacey (5). At moderate pressure conditions the vapor and liquid compositions for each temperature of this study showed deviations which never exceeded 1.4% of the

		To	ıble I. Experi	mental Vaj	oor-Liquid Ec	uilibrium Da	ta at 200°	F.		
Pressure.	Va	por Mole Frac	ction	Lic	uid Mole Frac	etion		K = y/x		
P.s.i.a.	Ethane	n-Butane	n-Pentane	Ethane	n-Butane	n-Pentane	Ethane	<i>n</i> -Butane	n-Pentane	С
					Charge I					
553 615 693 764 825 888 942	0.793 0.807 0.816 0.822 0.825 0.819 0.805	$\begin{array}{c} 0.0338\\ 0.0320\\ 0.0315\\ 0.0304\\ 0.0306\\ 0.0312\\ 0.0315 \end{array}$	$\begin{array}{c} 0.173 \\ 0.161 \\ 0.152 \\ 0.148 \\ 0.144 \\ 0.150 \\ 0.163 \end{array}$	$\begin{array}{c} 0.408 \\ 0.463 \\ 0.515 \\ 0.560 \\ 0.611 \\ 0.663 \\ 0.700 \end{array}$	$\begin{array}{c} 0.0594 \\ 0.0584 \\ 0.0579 \\ 0.0528 \\ 0.0503 \\ 0.0450 \\ 0.0408 \end{array}$	$\begin{array}{c} 0.533 \\ 0.479 \\ 0.427 \\ 0.387 \\ 0.399 \\ 0.292 \\ 0.259 \end{array}$	$1.944 \\1.743 \\1.584 \\1.468 \\1.350 \\1.235 \\1.150$	$0.569 \\ 0.548 \\ 0.544 \\ 0.576 \\ 0.608 \\ 0.693 \\ 0.772$	$\begin{array}{c} 0.325\\ 0.336\\ 0.356\\ 0.382\\ 0.425\\ 0.514\\ 0.629 \end{array}$	$\begin{array}{c} 0.100 \\ 0.109 \\ 0.119 \\ 0.120 \\ 0.129 \\ 0.134 \\ 0.136 \end{array}$
					Charge II					
537 614 714 815 909	$0.779 \\ 0.798 \\ 0.804 \\ 0.810 \\ 0.803$	$\begin{array}{c} 0.0714 \\ 0.0655 \\ 0.0623 \\ 0.0596 \\ 0.0603 \end{array}$	$\begin{array}{c} 0.150 \\ 0.1365 \\ 0.134 \\ 0.131 \\ 0.137 \end{array}$	$0.391 \\ 0.450 \\ 0.519 \\ 0.590 \\ 0.660$	0.124 0.117 0.111 0.102 0.0875	$0.485 \\ 0.433 \\ 0.370 \\ 0.308 \\ 0.252$	$1.992 \\ 1.773 \\ 1.549 \\ 0.373 \\ 1.217$	$\begin{array}{c} 0.576 \\ 0.560 \\ 0.561 \\ 0.584 \\ 0.689 \end{array}$	$\begin{array}{c} 0.309 \\ 0.315 \\ 0.362 \\ 0.425 \\ 0.544 \end{array}$	$0.204 \\ 0.213 \\ 0.231 \\ 0.248 \\ 0.257$
					Charge III					
545 624 715 805 845	0.751 0.772 0.786 0.795 0.790	$\begin{array}{c} 0.1165 \\ 0.108 \\ 0.103 \\ 0.0983 \\ 0.0970 \end{array}$	$\begin{array}{c} 0.1325 \\ 0.120 \\ 0.111 \\ 0.107 \\ 0.113 \end{array}$	$\begin{array}{c} 0.385 \\ 0.458 \\ 0.533 \\ 0.597 \\ 0.616 \end{array}$	$\begin{array}{c} 0.203 \\ 0.191 \\ 0.177 \\ 0.157 \\ 0.148 \end{array}$	$\begin{array}{c} 0.412 \\ 0.351 \\ 0.290 \\ 0.246 \\ 0.236 \end{array}$	$1.951 \\ 1.686 \\ 1.475 \\ 1.332 \\ 1.282$	$\begin{array}{c} 0.574 \\ 0.565 \\ 0.581 \\ 0.626 \\ 0.655 \end{array}$	$\begin{array}{c} 0.322 \\ 0.342 \\ 0.383 \\ 0.435 \\ 0.479 \end{array}$	$\begin{array}{c} 0.330 \\ 0.352 \\ 0.379 \\ 0.390 \\ 0.385 \end{array}$
					Charge IV					
525 605 685	$0.692 \\ 0.712 \\ 0.717$	$\begin{array}{c} 0.2045 \\ 0.191 \\ 0.188 \end{array}$	$\begin{array}{c} 0.1035 \\ 0.097 \\ 0.095 \end{array}$	$\begin{array}{c} 0.351 \\ 0.426 \\ 0.482 \end{array}$	$0.354 \\ 0.317 \\ 0.294$	$0.295 \\ 0.257 \\ 0.224$	$1.972 \\ 1.671 \\ 1.488$	$\begin{array}{c} 0.578 \\ 0.603 \\ 0.639 \end{array}$	$\begin{array}{c} 0.351 \\ 0.377 \\ 0.424 \end{array}$	$\begin{array}{c} 0.546 \\ 0.552 \\ 0.568 \end{array}$
					Charge V					
577 625 710 785 848	$\begin{array}{c} 0.725 \\ 0.731 \\ 0.753 \\ 0.732 \\ 0.725 \end{array}$	$\begin{array}{c} 0.174 \\ 0.177 \\ 0.159 \\ 0.167 \\ 0.172 \end{array}$	$\begin{array}{c} 0.101 \\ 0.0924 \\ 0.088 \\ 0.101 \\ 0.103 \end{array}$	$\begin{array}{c} 0.396 \\ 0.435 \\ 0.506 \\ 0.566 \\ 0.610 \end{array}$	$\begin{array}{c} 0.314 \\ 0.309 \\ 0.272 \\ 0.245 \\ 0.223 \end{array}$	$\begin{array}{c} 0.290 \\ 0.256 \\ 0.222 \\ 0.189 \\ 0.167 \end{array}$	$1.831 \\ 1.680 \\ 1.488 \\ 1.293 \\ 1.189$	$\begin{array}{c} 0.554 \\ 0.573 \\ 0.585 \\ 0.686 \\ 0.771 \end{array}$	$\begin{array}{c} 0.348 \\ 0.361 \\ 0.396 \\ 0.534 \\ 0.617 \end{array}$	$\begin{array}{c} 0.520 \\ 0.547 \\ 0.551 \\ 0.565 \\ 0.572 \end{array}$
					Charge VI					
$533 \\ 627 \\ 685 \\ 758 \\ 822^{\circ}$	$0.660 \\ 0.681 \\ 0.700 \\ 0.712$	$\begin{array}{c} 0.288 \\ 0.271 \\ 0.259 \\ 0.246 \end{array}$	$\begin{array}{c} 0.052 \\ 0.048 \\ 0.0413 \\ 0.042 \end{array}$	$\begin{array}{c} 0.334 \\ 0.411 \\ 0.461 \\ 0.520 \\ 0.575 \end{array}$	$\begin{array}{c} 0.510 \\ 0.467 \\ 0.429 \\ 0.389 \\ 0.348 \end{array}$	$\begin{array}{c} 0.156 \\ 0.122 \\ 0.110 \\ 0.091 \\ 0.0765 \end{array}$	$1.976 \\ 1.655 \\ 1.518 \\ 1.369$	$\begin{array}{c} 0.565 \\ 0.578 \\ 0.604 \\ 0.632 \end{array}$	$\begin{array}{c} 0.333 \\ 0.392 \\ 0.375 \\ 0.462 \end{array}$	$0.766 \\ 0.793 \\ 0.796 \\ 0.810$
817°	0.696	0.258	0.046							
" Liquid sa	mple only. *	Vapor sample	only.							

Table II. Experimental Vapor-Liquid Equilibrium Data at 250° F.

Prossiling	Va	por Mole Fra	ction	Liqu	uid Mole Fra	ction		K = y/x		
P.s.i.a.	Ethane	n-Butane	n-Pentane	Ethane	n-Butane	n-Pentane	Ethane	n-Butane	n-Pentane	C
					Charge I					
451	0.564	0.148	0.288	0.204	0.178	0.618	2.765	0.831	0.466	0.224
547	0.595	0.144	0.261	0.272	0.186	0.542	2.188	0.774	0.482	0.255
658	0.623	0.137	0.240	0.353	0.180	0.467	1.765	0.761	0.514	0.278
718	0.636	0.133	0.231	0.397	0.179	0.424	1.602	0.743	0.545	0.297
805	0.630	0.132	0.238	0.452	0.166	0.382	1.394	0.795	0.623	0.303
826	0.593	0.137	0.270	0.466	0.164	0.370	1.273	0.835	0.730	0.307
					Charge II	[
467	0.518	0.245	0.237	0.201	0.309	.0.490	2.577	0.793	0.484	0.387
525	0.541	0.244	0.215	0.246	0.316	0.438	2.199	0.772	0.491	0.419
603	0.555	0.236	0.209	0.294	0.309	0.397	1.888	0.764	0.526	0.438
690	0.584	0.222	0.194	0.352	0.298	0.350	1.659	0.745	0.554	0.460
755°	0.598	0.215	0.187							
757°				0.398	0.285	0.317				
792^{a}_{j}				0.431	0.267	0.302				
795°	0.594	0.216	0.190							
					Charge II	I				
489	0.440	0.384	0.176	0.185	0.474	0.341	2.378	0.810	0.499	0.582
537	0.475	0.362	0.163	0.215	0.464	0.321	2.209	0.780	0.508	0.591
602	0.505	0.344	0.151	0.264	0.455	0.281	1.913	0.756	0.537	0.618
667	0.526	0.340	0.134	0.317	0.435	0.248	1.659	0.782	0.540	0.637
$718^{a}_{}$				0.352	0.417	0.231				
737°	0.543	0.316	0.141							
738°				0.367	0.414	0.219				
753°				0.375	0.409	0.216				
757°	0.544	0.315	0.141							
					Charge IV	7				
484	0.377	0.519	0.104	0.158	0.638	0.204	2.386	0.813	0.510	0.758
534	0.403	0.501	0.0962	0.191	0.627	0.182	2.110	0.799	0.529	0.775
595 658'	$0.433 \\ 0.469$	$0.476 \\ 0.449$	0.0905 0.082	0.234	0.610	0.156	1.850	0.780	0.580	0.796
674°	0.100	0.110	0.002	0.293	0.574	0.133				

								````		
Pressure.	Vap	or Mole Frac	etion	Liq	uid Mole Fra	action		K = y/x		
P.s.i.a.	Ethane	n-Butane	<i>n</i> -Pentane	Ethane	n-Butane	n-Pentane	Ethane	n-Butane	n-Pentane	С
609	0 462	0 442	0.096	0.250	Charge V	0 176	1 848	0.770	0 545	0.765
645	0.476	0.433	0.091	0.274	0.566	0.160	1.737	0.765	0.569	0.780
699	0.500	0.414	0.086	0.322	0.533	0.145	1.553	0.777	0.593	0.786
742	0.514	0.401	0.085	0.353	0.514	0.133	1.456	0.780	0.639	0.794
$755^{\circ}$				0.370	0.504	0.126				
$759^{\circ}$	0.506	0.408	0.086							
^e Liquid san	ople only. ⁸	Vapor samn	ole only.							
							<u></u>	· .		
			Table III. Exp	perimental \	/apor-Liquic	l Equilibrium	Data at 30	00° F.		
Pressure,	Vapor M	ole Fraction	Liquid Me	ole Fraction	K	= y/x		- D		
P.S.I.A.	Ethane	<i>n</i> -Butane	<i>n</i> -Pentane	Ethane	n-Butane	<i>n</i> -Pentane	Ethane	<i>n</i> -Butane	<i>n</i> -Pentane	C
					Charge I					
600	0.477	0.105	0.418	0.210	0.155	0.635	2.271	0.677	0.658	0.196
659	0.475	0.104	0.421	0.239	0.136	0.625	1.987	0.765	0.674	0.179
742	0.492	0.104	0.404	0.296	0.114	0.590	1.662	0.912	0.685	0.162
744	0.489	0.105	0.406	0.272	0.120	0.608	1.798	0.875	0.668	0.165
807	0.481	0.104	0.415	0.322	0.112	0.566	1.494	0.929	0.733	0.165
833"	0.479	0 105	0 499	0.339	0.110	0.551				
030	0.475	0.105	0.422		Charge II					
621	0.402	0.236	0.362	0.207	Charge II	0.531	1 049	0.901	0.689	0.990
700	0.402	0.230	0.302	0.207	0.262	0.531	1.342	0.901	0.062	0.330
747	0.414	0.234	0.348	0.220 0.244	0.255	0.519	1.052 1.713	0.918	0.078	0.329
793*	0.408	0.236	0.356	0.244	0.202	0.004	1.710	0.525	0.050	0.000
795°	01100	0.200	0.000	0.272	0.250	0.478				
					Charge III					
598	0.322	0.400	0.278	0 169	0.419	0.412	1 905	0.955	0.675	0.504
605	0.323	0.400	0.277	0.100	0.423	0.412	1.888	0.946	0.610	0.504
632	0.329	0.400	0.271	0.188	0.425	0.387	1.750	0.941	0.700	0.523
672	0.334	0.398	0.268	0.199	0.420	0.381	1.678	0.948	0.703	0.524
$715^{\circ}$	0.337	0.396	0.267					010 10	01100	0.021
$716^{\circ}$				0.230	0.419	0.351				
734°	0.323	0.400	0.277							
735°				0.240	0.418	0.342				
					Charge IV	r				
462	0.355	0.127	0.518	0.134	0.119	0.747	2.649	1.067	0.693	0.137
515	0.390	0.127	0.483	0.158	0.126	0.716	2.468	1.008	0.675	0.150
633 ⁶	0.413	0.125 0.124	0.462	0.191	0.129	0.680	2.162	0.969	0.679	0.159
650°	0.441	0.124	0.455	0.448	0.123	0.429				
					Charge V					
464	0.280	0.200	0.491	0.114	0.975	0.611	0 505	1 055	0.000	0.910
515	0.209	0.250	0.421	0.114	0.275	0.611	2.000	1.000	0.689	0.310
572	0.355	0.200	0.366	0.142 0.172	0.282	0.540	2.200	0.969	0.678	0.329
$593^{\circ}$	0.367	0.273	0.360	0.172	0.200	0.040	2.004	0.000	0.010	0.551
$595^{\circ}$				0.185	0.292	0.523				
					Charge VI					
508	0.228	0 463	0.309	0.128	0.450	0 499	1 781	1.029	0.732	0.516
535	0.250	0.459	0.291	0 119	0.460	0.422	2 100	0.998	0.702	0.510
563	0.263	0.455	0.282	0.135	0.462	0 403	1 948	0.985	0.700	0.534
605	0.286	0.449	0.265	0.160	0,470	0.370	1.788	0.955	0.716	0.560
633°				0.183	0.464	0.353		0.000		0.000
$634^{\circ}$	0.298	0.443	0.259			•				
					Charge VI	I				
500	0.156	0.633	0.211	0.067	0.612	0.321	2.328	1.034	0.657	0.656
526	0.167	0.624	0.209	0.080	0.620	0.300	2.088	1.006	0.697	0.674
575	0.200	0.613	0.187	0.115	0.628	0.257	1.739	0.976	0.728	0.710
600°	0.070	o	A	0.133	0.629	0.238				
600°	0.212	0.607	0.181							
' Liquid san	ple only. ^b	Vapor samp	le only.							
	-	-								

Table I. Experimental Vapor-Liquid Equilibrium Data at 200° F. (Continued).

corresponding composition values reported by Reamer, Sage, and Lacey. However, for pressure approaching the critical point, this deviation increased to a maximum value of 3.4^Ce. These results were considered acceptable.

Such an intensive quantity which has found widespread use is the composition parameter, defined as follows (1):

$$C = \frac{x_i}{x_i + x_h} \tag{1}$$

For a ternary system, the vapor-liquid equilibrium constant, K = y/x, is a function of temperature, pressure, and composition. Therefore, if the temperature and pressure are fixed, one other intensive quantity which depends on composition must be specified in order to define the system.

Throughout the entire range of compositions of the ternary system of this study, the composition parameter varies from zero for the ethane-n-pentane system to unity for ethane-n-butane system.

	Critical Pressure.	Cor	Compn. at Critical Point, Mole Fraction			
	P.S.I.A.	Ethane	n-Butane	n-Pentane	C	
	Critica	al Temperature,	200° F.			
Ethane $-n$ -pentane (5)	980	0.764	0.000	0.236	0.000	
Charge I	975	0.750	0.038	0.212	0.152	
Charge II	960	0.739	0.070	0.191	0.268	
Charge III	925	0.723	0.112	0.165	0.404	
Charge V	888	0.692	0.188	0.120	0.610	
Charge VI	855	0.661	0.277	0.062	0.817	
Ethane- $n$ -butane (4)	837	0.625	0.375	0.000	1.000	
	Critics	al Temperature,	250° F.			
Ethane- $n$ -pentane (5)	984	0.652	0.000	0.348	0.000	
Charge I	930	0.582	0.148	0.270	0.354	
Charge II	885	0.545	0.235	0.220	0.516	
Charge III	827	0.504	0.333	0.163	0.671	
Charge V	790	0,460	0.438	0.102	0.811	
Ethane- $n$ -butane (4)	750	0.382	0.618	0.000	1.000	
	Critic	al Temperature,	300° F.			
Ethane- $n$ -pentane (5)	904	0.481	0.000	0.519	0.000	
Charge I	880	0.430	0.110	0.460	0.193	
Charge II	833	0.366	0.240	0.394	0.379	
Charge III	753	0.298	0.410	0.292	0.584	
Charge VII	675	0.215	0.610	0.175	0.777	
Ethane $-n$ -butane (4)	578	0.050	0.950	0.000	1.000	

# Table IV. Critical Pressures and Compositions for each Temperature Investigated



Figure 1. Vapor-liquid equilibrium composition and pressure relationships for a mixture of ethane, *n*-butane, and *n*-pentane at 200° F. (Charge V)

For temperatures of  $200^{\circ}$ ,  $250^{\circ}$ , and  $300^{\circ}$  F., charges were prepared with composition parameters ranging from zero to unity. These parameters were chosen so that each charge was at its critical temperature, and therefore the vapor and liquid phases would be present as the critical pressure was approached. These compositions were determined by the method described by Grieves and Thodos (2). For each charge the compositions of the vapor and liquid phases in equilibrium were determined at several pressures

4



Figure 2. Relationships between the critical pressure and composition at 200°, 250°, and 300° F.

Table V. Final K Values at 200° F.					Table VI. Final K Values at 250° F.					
	Pressure, $Vapor-Liquid EquilibriumConstant, K = y/x$					-Liquid Equi onstant, $K = \frac{1}{2}$	ilibrium y/x			
	P.s.i.a.	Ethane	n-Butane	n-Pentane		P.s.i.a.	Ethane	n-Butane	n-Pentane	
C = 0.000 Critical	500 550 600 650 700 750 800 850 900 920 940 960 980	$\begin{array}{c} 2.111 \\ 1.960 \\ 1.806 \\ 1.693 \\ 1.567 \\ 1.480 \\ 1.386 \\ 1.305 \\ 1.231 \\ 1.198 \\ 1.159 \\ 1.110 \\ 1.000 \end{array}$		$\begin{array}{c} 0.299\\ 0.300\\ 0.305\\ 0.318\\ 0.336\\ 0.361\\ 0.395\\ 0.442\\ 0.512\\ 0.556\\ 0.617\\ 0.720\\ 1.000 \end{array}$	<i>C</i> = 0.000	450 500 650 650 700 750 800 850 900 920 940 960	$\begin{array}{c} 2.632\\ 2.393\\ 2.191\\ 2.012\\ 1.870\\ 1.750\\ 1.630\\ 1.522\\ 1.416\\ 1.305\\ 1.263\\ 1.218\\ 1.159\end{array}$		$\begin{array}{c} 0.475\\ 0.463\\ 0.460\\ 0.460\\ 0.464\\ 0.477\\ 0.498\\ 0.531\\ 0.573\\ 0.628\\ 0.658\\ 0.699\\ 0.763\end{array}$	
<i>C</i> = 0.200	$500 \\ 550 \\ 600 \\ 650 \\ 700 \\ 750 \\ 800 \\ 850 \\ 900 \\ 920 \\ 940 \\ 960$	$\begin{array}{c} 2.099\\ 1.938\\ 1.793\\ 1.668\\ 1.558\\ 1.456\\ 1.364\\ 1.283\\ 1.203\\ 1.168\\ 1.122\\ 1.068\end{array}$	$\begin{array}{c} 0.532\\ 0.529\\ 0.527\\ 0.535\\ 0.545\\ 0.560\\ 0.585\\ 0.628\\ 0.690\\ 0.725\\ 0.772\\ 0.857\end{array}$	$\begin{array}{c} 0.310\\ 0.313\\ 0.320\\ 0.333\\ 0.345\\ 0.381\\ 0.412\\ 0.460\\ 0.540\\ 0.597\\ 0.678\\ 0.832 \end{array}$	Critical C = 0.200	984 450 500 600 650 700 750 800 850 900 920	$\begin{array}{c} 1.000\\ 2.602\\ 2.368\\ 2.161\\ 1.980\\ 1.826\\ 1.697\\ 1.575\\ 1.470\\ 1.363\\ 1.252\\ 1.202 \end{array}$	$\begin{array}{c} 0.810\\ 0.776\\ 0.757\\ 0.745\\ 0.737\\ 0.735\\ 0.737\\ 0.735\\ 0.737\\ 0.750\\ 0.775\\ 0.810\\ 0.834 \end{array}$	$\begin{array}{c} 1.000\\ 0.491\\ 0.477\\ 0.475\\ 0.480\\ 0.490\\ 0.510\\ 0.535\\ 0.567\\ 0.617\\ 0.690\\ 0.737\end{array}$	
Critical	968	1.000	1.000	1.000	Critical	$940 \\ 958$	$\begin{array}{c} 1.148 \\ 1.000 \end{array}$	$\begin{array}{c} 0.874 \\ 1.000 \end{array}$	$0.805 \\ 1.000$	
<i>C</i> = 0.400	500 550 600 650 700 750 800 840 880 900 920	$\begin{array}{c} 2.078 \\ 1.912 \\ 1.769 \\ 1.641 \\ 1.530 \\ 1.430 \\ 1.339 \\ 1.272 \\ 1.200 \\ 1.152 \\ 1.080 \end{array}$	$\begin{array}{c} 0.544\\ 0.542\\ 0.542\\ 0.550\\ 0.560\\ 0.582\\ 0.620\\ 0.666\\ 0.741\\ 0.796\\ 0.887\end{array}$	$\begin{array}{c} 0.321 \\ 0.325 \\ 0.331 \\ 0.347 \\ 0.370 \\ 0.399 \\ 0.439 \\ 0.495 \\ 0.591 \\ 0.675 \\ 0.820 \end{array}$	C = 0.400	450 500 550 600 650 700 750 800 840 860 860	$\begin{array}{c} 2.570\\ 2.570\\ 2.340\\ 2.130\\ 1.944\\ 1.780\\ 1.647\\ 1.520\\ 1.410\\ 1.310\\ 1.260\\ 1.210\end{array}$	$\begin{array}{c} 0.816\\ 0.783\\ 0.765\\ 0.751\\ 0.744\\ 0.742\\ 0.750\\ 0.770\\ 0.800\\ 0.820\\ 0.820\\ 0.842\end{array}$	$\begin{array}{c} 0.503\\ 0.495\\ 0.496\\ 0.503\\ 0.518\\ 0.542\\ 0.572\\ 0.612\\ 0.663\\ 0.698\\ 0.744\end{array}$	
Critical	928	1.000	1.000	1.000		900	1.150	0.843 0.878	0.744 0.806	
<i>C</i> = 0.600	500 550 600 700 750 800 840 860 880	$\begin{array}{c} 2.055\\ 1.888\\ 1.740\\ 1.618\\ 1.500\\ 1.399\\ 1.301\\ 1.218\\ 1.166\\ 1.082\end{array}$	$\begin{array}{c} 0.569 \\ 0.566 \\ 0.567 \\ 0.573 \\ 0.585 \\ 0.614 \\ 0.661 \\ 0.735 \\ 0.795 \\ 0.885 \end{array}$	$\begin{array}{c} 0.330\\ 0.336\\ 0.345\\ 0.365\\ 0.391\\ 0.431\\ 0.495\\ 0.590\\ 0.670\\ 0.820\\ \end{array}$	Critical C = 0.600	919 450 550 600 650 700 750 800 820 840	$\begin{array}{c} 1.000\\ 2.550\\ 2.312\\ 2.098\\ 1.905\\ 1.719\\ 1.597\\ 1.458\\ 1.306\\ 1.242\\ 1.155\end{array}$	$\begin{array}{c} 1.000\\ 0.825\\ 0.792\\ 0.773\\ 0.760\\ 0.753\\ 0.750\\ 0.769\\ 0.807\\ 0.833\\ 0.877\end{array}$	$\begin{array}{c} 1.000\\ 0.512\\ 0.510\\ 0.515\\ 0.527\\ 0.548\\ 0.578\\ 0.622\\ 0.700\\ 0.755\\ 0.755\\ \end{array}$	
Critical	888	1.000	1.000	1.000	Critical	840 853	1.155	1.000	0.847 1.000	
<i>C</i> = 0.800	500 550 600 650 700 750 800 820 820 840	$\begin{array}{c} 2.015 \\ 1.852 \\ 1.705 \\ 1.581 \\ 1.467 \\ 1.367 \\ 1.259 \\ 1.210 \\ 1.150 \end{array}$	$\begin{array}{c} 0.589 \\ 0.587 \\ 0.589 \\ 0.606 \\ 0.640 \\ 0.705 \\ 0.749 \\ 0.810 \end{array}$	$\begin{array}{c} 0.338\\ 0.346\\ 0.361\\ 0.385\\ 0.420\\ 0.477\\ 0.574\\ 0.645\\ 0.745\end{array}$	C = 0.800	$\begin{array}{c} 450 \\ 500 \\ 550 \\ 600 \\ 650 \\ 700 \\ 740 \\ 760 \\ 780 \\ 780 \\ 780 \end{array}$	$\begin{array}{c} 2.480\\ 2.240\\ 2.020\\ 1.839\\ 1.678\\ 1.530\\ 1.400\\ 1.323\\ 1.220\\ 1.000\end{array}$	$\begin{array}{c} 0.836\\ 0.805\\ 0.788\\ 0.777\\ 0.773\\ 0.780\\ 0.812\\ 0.846\\ 0.905\\ 1.900\\ \end{array}$	$\begin{array}{c} 0.525\\ 0.525\\ 0.533\\ 0.555\\ 0.583\\ 0.632\\ 0.688\\ 0.735\\ 0.816\\ 0.816\end{array}$	
Critical C = 0.900 Critical	858 500 550 600 650 700 750 800 820 840 840 846	$\begin{array}{c} 1.000\\ 1.980\\ 1.810\\ 1.666\\ 1.548\\ 1.440\\ 1.332\\ 1.225\\ 1.225\\ 1.170\\ 1.065\\ 1.000\end{array}$	1.000	1.000	Critical C = 0.900 Critical	793 450 550 600 650 700 720 740 760 770	$\begin{array}{c} 1.000\\ 2.405\\ 2.170\\ 1.949\\ 1.760\\ 1.600\\ 1.448\\ 1.380\\ 1.305\\ 1.185\\ 1.000\\ \end{array}$	1.000	1.000	
C = 1.000	500 550 600 650 700 750 800 820 837	$\begin{array}{c} 1.938\\ 1.938\\ 1.771\\ 1.630\\ 1.520\\ 1.410\\ 1.303\\ 1.197\\ 1.129\\ 1.000\\ \end{array}$	$\begin{array}{c} 0.610\\ 0.605\\ 0.605\\ 0.609\\ 0.628\\ 0.666\\ 0.741\\ 0.796\\ 1.000\\ \end{array}$		C = 1.000 Critical	$\begin{array}{c} 450 \\ 500 \\ 550 \\ 600 \\ 650 \\ 700 \\ 720 \\ 740 \\ 750 \end{array}$	$\begin{array}{c} 2.255\\ 2.040\\ 1.841\\ 1.657\\ 1.482\\ 1.320\\ 1.250\\ 1.155\\ 1.000\\ \end{array}$	0.860 0.830 0.815 0.809 0.818 0.851 0.880 0.938 1.000		



Figure 3. Relationships between critical pressure and composition parameter



700

PRESSURE, P.S.I.A.

800

900

1000

	Pressure,	Vapor-Liquid Equilibrium Constant, $K = y/x$				Presente	Vapor-Liquid Equilibrium Constant, $K = y/x$		
	P.S.I.A.	Ethane	n-Butane	n-Pentane		P.S.I.A.	Ethane	n-Butane	n-Pentane
C = 0.000	500	2.500		0.666	C = 0.400	500	2.350	1.020	0.685
	550	2.289		0.652		550	2.132	0.970	0.675
	600	2.100		0.649		600	1.946	0.930	0.672
	650	1.925		0.653		650	1.778	0.910	0.679
	700	1.775		0.665		700	1.624	0.909	0.694
	750	1.632		0.688		740	1.501	0.919	0.718
	800	1.498		0.726		760	1.440	0.928	0.740
	820	1.445		0.751		780	1.372	0.939	0.773
	840	1.390		0.781		800	1.295	0.954	0.820
	860	1.328		0.820		820	1.140	0.984	0.915
	880	1.248		0.873	Critical	825	1.000	1.000	1.000
	900	1.110		0.958					
Critical	903	1.000		1.000	C = 0.600	500	2.240	1.030	0.695
						550	2.020	0.987	0.689
C = 0.200	500	2.440	1.010	0.675		600	1.812	0.955	0.692
	550	2.220	0.956	0.663		640	1.655	0.941	0.706
	600	2.032	0.916	0.660		660	1.570	0.940	0.723
	650	1.870	0.891	0.665		680	1.452	0.942	0.743
	700	1.728	0.885	0.677		700	1.410	0.950	0.772
	750	1.586	0.891	0.700		720	1.310	0.960	0.823
	800	1.448	0.905	0.745		740	1.160	0.983	0.915
	820	1.385	0.915	0.774	Critical	746	1.000	1.000	1.000
	840	1.305	0.928	0.815					
	860	1.205	0.950	0.874					
Critical	877	1.000	1.000	1.000				(Conti	nued on page

Table VII. Final K Values at 300° F.

500

600

(Continued on page 7)

	Pressure.	Vapor-Liquid Equilibrium Constant, $K = y/x$						
	P.s.i.a.	Ethane	n-Butane	n-Pentane				
C = 0.700	500	2.143						
	550	1.908						
	600	1.670						
	640	1.475						
	660	1.375						
	700	1.272						
Critical	707	1.000						
C 0.800	500	0.000	1.040	0.705				
C = 0.800	550	2.025	1.040	0.703				
	600	1.502	0.972	0.768				
	620	1.382	0.972	0.800				
	640	1.252	0.976	0.845				
	650	1.185	0.980	0.875				
a 1	660	1.060	0.988	0.922				
Critical	667	1.000	1.000	1.000				
3.0								
<b>├</b> ──┼	++							
	.							
2.5		LIHANE-n-B		ANE				
		SYSTEI	MAT 250 F					



Figure 5. Vapor-liquid equilibrium constants at 250° F.

above 500 p.s.i.a. The experimentally determined compositions for the different charges are presented in Table I, II, and III for temperatures of  $200^{\circ}$ ,  $250^{\circ}$ , and  $300^{\circ}$  F., respectively. In the vicinity of the critical point, it frequently became necessary to withdraw a sample of the vapor phase first and allow equilibrium again to be reached



Figure 6. Vapor-liquid equilibrium constants at 300° F.



Figure 7. Vapor-liquid equilibrium behavior at 200° F.

before withdrawing the liquid sample. This was done in order to eliminate the possible contamination of vapor phase with liquid, caused by the similarity between the densities of the two phases at these conditions. Data for each charge were smoothed by plotting them against pressure (Figure 1). Solid lines represent the liquid phase; dashed lines,



Figure 8. Vapor-liquid equilibrium behavior at 250° F.

the vapor phase. For Charge V, vapor and liquid compositions were obtained for pressures up to 848 p.s.i.a., and the resulting bubble point and dew point curves of each component were extended to their point of convergence, the critical pressure. For the charge of Figure 1, the critical pressure was found to be 888 p.s.i.a. for mole fraction compositions of 0.692 ethane, 0.188 n-butane, and 0.120 *n*-pentane. For the remaining charges, plots similar to Figure 1 were prepared to estimate the critical pressures and compositions. Equilibrium constants were determined from the smoothed curves for each charge. The final value of the critical pressure for each charge was established as the pressure at which the curves for the three components converged at K = 1.00 in a plot of the equilibrium constant for the charge vs. pressure. Resulting values of the critical pressure are presented in Table IV, along with corresponding critical temperatures and compositions and critical values for the related binaries.

These critical pressures (Figure 2) are plotted against the corresponding compositions to produce similar relationships for each temperature. Critical pressures for the charges and related binaries were also plotted against the composition parameter to obtain a single relationship for each temperature (Figure 3).

Vapor-liquid equilibrium constants obtained from the smoothed curves for each charge of the form of Figure 1 were plotted against the composition parameter for convenient pressures and were cross plotted as K against pressures for constant composition parameters, as shown in Figure 4, 5, and 6 for 200°, 250°, and 300° F., respectively. In general, the equilibrium constnants resulting from the experimental data are in close agreement with the smoothed values presented in these figures. Over 100 randomly selected experimental values at these temperatures were compared with corresponding values obtained from Figures 4, 5, and 6 to produce an average deviation of 1.56%for ethane, 1.58% for *n*-butane, and 2,23% for *n*-heptane. Final K values for this ternary system obtained from Figures 4, 5, and 6 are presented in Tables V, VI, and VII, respectively.



Figure 9. Vapor-liquid equilibrium behavior at 300° F.

The vapor-liquid equilibrium behavior of this system is presented in the form of triangular plots for the three temperatures as shown in Figures 7, 8, and 9. In these figures the tie line for each charge was found to be independent of the pressure.

#### ACKNOWLEDGMENT

Thanks are extended to the Phillips Petroleum Co. for providing the hydrocarbons used. A National Science Foundation grant (NSF-G9700) supported this investigation.

## NOMENCLATURE

- $C = \text{composition parameter, } x_i / (x_i + x_h)$
- K = vapor-liquid equilibrium constant, y/x
- $P_c$  = critical pressure, p.s.i.a.
- x = mole fraction of a component in liquid phase
- $x_h$  = mole fraction in liquid phase of component of lowest volatility
- $x_i$  = mole fraction in liquid phase of component of intermediate volatility
- y = mole fraction of a component in vapor phase

## LITERATURE CITED

- (1) Carter, R.T., Sage, B.H., Lacey, W.N., Am. Inst. Mining Met. Engrs. Tech. Publ. 1250 (November, 1940).
- (2) Grieves, R.B., Thodos, George, Ind. Eng. Chem., Fundamentals 1, 45 (1962).
- (3) Herlihy, J. C., Thodos, George, J. Chem. Eng. Data 7, 348 (1962).
- (4) Kay, W.B., Ind. Eng. Chem. 32, 353 (1940).
- (5) Reamer, H.H., Sage, B.H., Lacey, W.N., J. CHEM. ENG. DATA 5, 44 (1960).
- (6) Rigas, T.J., Mason, D.F., Thodos, George, Ind. Eng. Chem. 50, 1297 (1958).

RECEIVED for review July 5, 1962. Accepted September 17, 1962.